If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-8x-43=0
a = 1; b = -8; c = -43;
Δ = b2-4ac
Δ = -82-4·1·(-43)
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{59}}{2*1}=\frac{8-2\sqrt{59}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{59}}{2*1}=\frac{8+2\sqrt{59}}{2} $
| 2y+29+8y=5 | | -3+8(2x+)=5(-3x-2) | | 4(3-2x)+2(x+1)=5 | | -10=-2v-5 | | -8y+195+y^2=180 | | 26x+12=5(5x+2) | | O=n=15-4n | | -9x+8x-12=7 | | -6x-10(x+9)=-5(3x+5) | | 6X+2Y=-15y | | 0=-2/5x+20 | | 3x−8=8x−33 | | -5(r+3)=-54 | | 9-x=-14-3x | | f(0)-7=-2((0)-7)-3 | | x^2(x-8)=43 | | 35-10x=15x | | 3(4x+5)=19x+11-7x+4 | | -6x-10(x+9=-5(3x+5) | | 28=g | | Y-7+4y=17 | | (1/2)^x=0.01 | | 72/6=n | | -117-4x=130+9x | | -7c+7c+1=3 | | -8x+16-42-70x=-26 | | 7x-9+4x=3x-33 | | -82-6x=-15x+188 | | -122x=144 | | 7n-7(n-7)=24+5n | | 9-x=-14x-3x | | 4(x+6)=23+4x |